from keras import layers, regularizers
复制代码
- #实现方式1
- class ChannelAttention(layers.Layer):
- def __init__(self, in_planes, ratio=8):
- super(ChannelAttention, self).__init__()
- self.avg_out= layers.GlobalAveragePooling2D()
- self.max_out= layers.GlobalMaxPooling2D()
- self.fc1 = layers.Dense(in_planes//ratio, kernel_initializer='he_normal',
- kernel_regularizer=regularizers.l2(5e-4),
- activation=tf.nn.relu,
- use_bias=True, bias_initializer='zeros')
- self.fc2 = layers.Dense(in_planes, kernel_initializer='he_normal',
- kernel_regularizer=regularizers.l2(5e-4),
- use_bias=True, bias_initializer='zeros')
- def call(self, inputs):
- avg_out = self.avg_out(inputs)
- max_out = self.max_out(inputs)
- out = tf.stack([avg_out, max_out], axis=1) # shape=(None, 2, fea_num)
- out = self.fc2(self.fc1(out))
- out = tf.reduce_sum(out, axis=1) # shape=(256, 512)
- out = tf.nn.sigmoid(out)
- out = layers.Reshape((1, 1, out.shape[1]))(out)
- return out
复制代码
- #实现方式2
- class ChannelAttention(layers.Layer):
- def __init__(self, in_planes):
- super(ChannelAttention, self).__init__()
- self.avg= layers.GlobalAveragePooling2D()
- self.max= layers.GlobalMaxPooling2D()
- self.fc1 = layers.Dense(in_planes//16, kernel_initializer='he_normal', activation='relu',
- use_bias=True, bias_initializer='zeros')
- self.fc2 = layers.Dense(in_planes, kernel_initializer='he_normal', use_bias=True,
- bias_initializer='zeros')
- def call(self, inputs):
- avg_out = self.fc2(self.fc1(self.avg(inputs)))
- max_out = self.fc2(self.fc1(self.max(inputs)))
- out = avg_out + max_out
- out = tf.nn.sigmoid(out)
- out = tf.reshape(out, [out.shape[0], 1, 1, out.shape[1]])
- out = tf.tile(out, [1, inputs.shape[1], inputs.shape[2], 1])
- return out
欢迎光临 52matlab技术网站,matlab教程,matlab安装教程,matlab下载 (http://www.52matlab.com/) | Powered by Discuz! X3.2 |